
LispQuery Notation—A DSL for Data Processing
Anders Hoff

inconvergent@gmail.com

ABSTRACT
This paper introduces Lisp Query Notation (LQN). A Common Lisp
library, DSL and command-line utility for manipulating text files,
and structured data such as JSON and csv, and Lisp Source code.

First we introduce the motivation and design principles. Then
we present the LQN syntax, and demonstrate how to use LQN as a
library to manipulate data structures in CL. Moreover we demon-
strate how to use LQN from the command-line. After describing
several operators and their syntax in more detail we finally describe
a few possibilities for improvements and further work.

CCS CONCEPTS
• Software and its engineering → Domain specific languages.

KEYWORDS
demonstration, command-line utility, data processing, domain spe-
cific language, structured data, functional programming, common
lisp

ACM Reference Format:
Anders Hoff. 2024. Lisp Query Notation—A DSL for Data Processing. In
Proceedings of European Lisp Symposium (ELS’24).ACM, New York, NY, USA,
4 pages. https://doi.org/10.5281/11001584

1 INTRODUCTION
Lisp Query Notation (LQN) 1 is a Domain Specific Language (DSL),
Common Lisp (CL) library, and command-line utility for text and
data processing. It draws inspiration from other well-known text
processing tools, such as Sed, AWK, and jq2. In particular LQN
mimics jq’s tacit style and chaining of operations.

We start by describing the motivation and main features of the
query language. Further we introduce the LQN CL library, before
we make the seamless transition to using the LQN terminal com-
mands. Finally we comment on some implementation details and
challenges; performance improvements; and potential further work.

2 MOTIVATION, DESIGN AND
IMPLEMENTATION

LQN started as an exercise. The primary motivation beyond that
is to develop a terse, but intuitive language that makes it fast and
convenient to write small (sometimes throw-away) programs; pri-
marily on the command line. Where all—or most—of the processing

1https://github.com/inconvergent/lqn (v. 2.0.1)
2https://jqlang.github.io/jq/

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’24, May 06–07, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s).
https://doi.org/10.5281/11001584

can be done in the same language. It should also be possible to fall
back to conventional CL when LQN is incomplete, inconvenient or
insufficient.

It should handle common data formats such as plain text, JSON,
csv and Lisp data. Moreover it should handle tasks encountered
by e.g. data scientist, data engineers, and when making Generative
Art. All of which are practices that require data wrangling. The
latter is particularly relevant as we use CL for our art practice. As
such it is convenient to export, import and process data in a format
native to Common Lisp.

2.1 Compiler
The current compiler performs all code generation in a single pass.
Because of this inherent simplicity the core of the compiler is only
about 400 lines of code. The syntax is flexible enough that mixing
the LQN syntax with CL and other libraries does not appear to
present much friction.3

2.2 Internal Data Representation
In order to handle multiple data formats LQN always loads all input
data into native CL objects. Primarilyvectors andhash-tables.
E.g. text files are read into vectors of strings; whereas JSON
is read into vectors and hash-tables, depending on the struc-
ture.

[{ "id": "1",
"objs": [{ "obj": "Ball",

"is": "round" }] },
{ "id": "2",

"msg": "Hi",
"objs": [{ "obj": "Box",

"is": "empty" },
{ "obj": "Yak",
"is": "shaved" },

{ "obj": "Computer" }] },
{ "id": "3",

"msg": "Hello!",
"objs": [{ "obj": "Paper" },

{ "obj": "Bottle",
"is": "empty" }] }]

Listing 1: Contents of dat.json

2.3 CL Library
In the first example we use the function, jsnloadf, to load some
JSON from a file. The contents of dat.json are in listing 1.

* (in-package :lqn)

* (jsnloadf "dat.json")
> #(#<HASH-TABLE :COUNT 2 {1793}>

3So far LQN has only been tested in SBCL on Ubuntu 22.04 LTS, with a limited number
of other libraries.

https://doi.org/10.5281/11001584
https://doi.org/10.5281/11001584

ELS’24, May 06–07, 2024, Vienna, Austria Anders Hoff

#<HASH-TABLE :COUNT 3 {1E43}>
#<HASH-TABLE :COUNT 3 {2B33}>)

We see that the JSON file has been loaded into a CL vector
with three hash-tables. Storing data in hash-tables and
vectors internally facilitates easy data manipulation and extrac-
tion. For the LQN compiler as well as the user. We can use ldnout
to serialize data before printing it:

* (ldnout (jsnloadf "dat.json"))
> #(((:ID . "1")

(:OBJS . #(((:OBJ . "Ball")
(:IS . "round")))))

...
((:ID . "3")
(:MSG . "Hello!")
(:OBJS . #(((:OBJ . "Paper"))

((:OBJ . "Bottle")
(:IS . "empty"))))))

Note that ldnout serializes to a combination of vectors, and
alistswithkeyword keys.Wewill use the acronymLDN—“Lisp
Data Notation”—to refer to this particular way of serializing such a
nested structure.4

The primary entry point to the LQN compiler is the qry macro.
The following is a query that simply returns the input. As we will
see shortly, _ is used to refer to the current data in any operator or
context.

* (defvar *dat* (jsnloadf "dat.json"))

* (ldnout (qry *dat* _))

2.4 Queries & the Get Operator
There are several different ways to get, select or iterate data in
LQN. The simplest is (@ ...), which can be used to access a
particular key, index or path. The optional second argument is used
as a default value. Here are some examples:

* (qry *dat* (@ :1/msg))
> "Hi"

* (qry *dat* (@ :1/abc :missing))
> :MISSING

* (ldnout (qry *dat* (@ :*/msg)))
> #("Hi" "Hello!")

* (ldnout (qry *dat* (@ :*/msg :nope)))
> #(:NOPE "Hi" "Hello!")

* (ldnout (qry *dat* (@ :*/objs/*/obj)))
> [["Ball"],

["Box", "Yak", "Computer"],
["Paper", "Bottle"]]

This makes it easy to quickly look at parts of a data structure.
For brevity we omit calls to ldnout in the examples from now on.

2.5 Pipe, Map and Filter
Data can be chained, iterated and filtered in a few different ways.
First we consider these three operators:

4In time we might add support for Extensible Data Notation (edn), which is a little
more more pleasant to look at. LDN will do for now.

• (||...): pipe the result of each clause to the next clause.
Returns the last result. We will see that it usually isn’t nec-
essary to use pipe explicitly;

• #(...): map these clauses across a vector. If there are
multiple clauses they are wrapped in a pipe. Returns new
vector;

• [...]: filter vector by one or more clauses. Returns new
vector.

The following is an example where we chain a map and filter to-
gether. First we select the id from each item and convert it to an
integer; then we drop odd values.

* (qry *dat* (|| #((@ :id) int!)
[evenp]))

> #(2)

We note that bare symbols (int!, evenp) inside their respective
operators are called as functions with _ as the first argument. More-
over, qry will wrap all arguments beyond the first in an implicit
pipe operator. So we get the same result if we write this:

* (qry *dat* #((@ :id) int!) [evenp])

You can also use arbitrary expressions:

* (qry *dat* #((@ :id) int! (+ 10 _))
[(< _ 13)])

> #(11 12)

If there are multiple clauses in the filter, the default is to include
items that match either clause. E.g. [evenp (< _ 2)] to select
even numbers as well as numbers smaller than 2.

To require multiple clauses to be satisfied, use the +@ modifier:

* (qry *dat* #((@ :id) int!)
[+@oddp (+@< _ 2)])

> #(1)

Similarly, the -@ modifier drops items on some condition; in this
case the number 1:

* (qry *dat* #((@ :id) int!)
[oddp (-@= _ 1)])

> #(3)

The full behaviour of the filter modifiers is explained in the doc-
umentation. They can be combined to some extent, but if the be-
haviour of the modifiers do not suit your situation, you can use
regular CL, as we have seen already.5

2.6 LQN on the Command-line
The transition to use LQN in the terminal is virtually seamless.
Currently there are three different entry points to LQN: Namely
the commands tqn, jqn and lqn; for txt, JSON, and Lisp data
respectively. They expect different input data formats, but they all
behave in (nearly) the same way. You can always output data to
any format from either terminal command, as you can see in this
excerpt from the output of tqn -h on the command-line:
$ tqn -h
> Usage:

tqn [options] <qry> [files ...]
cat sample.csv | tqn [options] <qry>

5We also note that the behaviour of these modifiers is one of the open questions of the
overall design of LQN.

LispQuery Notation—A DSL for Data Processing ELS’24, May 06–07, 2024, Vienna, Austria

Options:
-v prints the compiled qry before the
result. For debugging.
-j output as JSON.
-l output to readable lisp data (LDN).
-t output as TXT [default].
-z preserve empty lines in TXT.
...

2.7 Processing text
To start, here is a query that splits the incoming string at every
"x", before it converts each new string to uppercase (sup).
splt will trim off any white space by default.
$ echo 'a b c x def x 27'\

| tqn '(splt _ :x) sup'
> A B C

DEF
27

abc
1
33
def
abcdefghi
7

Listing 2: Contents of dat.txt

Notice that the first expression receives the entire incomingstring
as its input. Whereas “bare” top-level symbols inside the implicit
pipe operator are called on each individual item in the incoming
vector; i.e. they are shorthand for the map operator.

Next we read from the txt file dat.txt. You can see the con-
tents in listing 2. This query finds strings that contain the substring
"ghi", as well as all items that can be parsed as an integer by
int!?:
$ tqn '[:ghi int!?]' dat.txt
> 1

33
abcdefghi
7

We have seen the filter operator already. But note that now a
keyword is used as shorthand for case insensitive substring search.6
strings do the same, except then the case is required to match.

The syntax is the same as we saw when using LQN as a library.
So we can use modifiers to require multiple substring matches:
$ tqn '[:+@abc :+@ghi]' dat.txt
> abcdefghi

animal,cat,angry
animal,yak,shaved
obj,pen,red
shape,ball,round

6There is no explicit support for regex in LQN yet. But using existing libraries is
trivial.

shape,box,square

Listing 3: Contents of dat.csv

2.8 Transforming with Selectors
A frequent task when handling data structures like in listing 1 is
iterating all items to perform some selection and/or transformation.
LQN has several operators for this purpose:

• {...}: select keys from ahash-table into a newhash-table;
• #{...}: select keys from vector of a hash-tables
into a new vector of hash-tables;

• #[...]: select keys from vector of a hash-tables
into a new vector.

So to select the id and msg fields from all items we can do this:
$ jqn '#{ :id :msg }' dat.json
> [{ "id": "1", "msg": null },

{ "id": "2", "msg": "Hi" },
{ "id": "3", "msg": "Hello!" }]

If you also want to transform some keys you can do this instead:
$ jqn '#{ (:id (+ 10 (int! _)))

(:?@msg sup) }' dat.json
> [{ "id": 11 },

{ "id": 12, "msg": "HI" },
{ "id": 13, "msg": "HELLO!" }]

Again we see that bare symbols are interpreted as a function with
the current value as the only argument. Whereas expressions are
evaluated as they are.

Notice that we have used the ?@modifier to handle that the first
item is missing a field. In all are three modifiers to augment the
behaviour of selectors:

• ?@: include if the key exists and its value is not NIL;
• %@: include only if our expression is not NIL;
• -@: drop this key.

Consider this query to see how the %@ modifier only includes the
msg key if the length of the string is greater than 3.
$ jqn '#{ :id

(:%@msg (and (> (size? _) 3)
(sup _))) }

' dat.json
> [{ "id": "1" },

{ "id": "2" },
{ "id": "3", "msg": "HELLO!" }]

Sometimes you want everything except some keys. The -@modifier
combined with _ allows us to discard or override keys. As such, the
following will yield the same output as we just saw:
$ jqn '#{ _ :-@objs

(:%@msg (and (> (size? _) 3)
(sup _))) }

' dat.json

Selectors, and all other operators can be nested. Here is one
more example where we use nested selectors, and print the result
as newline separated JSON.
$ jqn -tjm '#[(:objs #[(:obj sdwn)

(:?@is sup)])]

ELS’24, May 06–07, 2024, Vienna, Austria Anders Hoff

' dat.json
> ["ball","ROUND"]

["box","EMPTY","yak","SHAVED","computer"]
["paper","bottle","EMPTY"]

LQN could use more utilities for handling csv files properly. But
here is a more complex expression to illustrate how to group items
by the first column of the csv file in listing 3; before printing the
output as JSON.
$ tqn -j '#((splt _ ","))

(?grp (@) (new$:id (@ 1)
:is (@ 2)))

' dat.csv
> { "animal": [

{ "id": "cat", "is": "angry" },
{ "id": "yak", "is": "shaved" }],

"obj": [...],
"shape": [...] }

2.9 Other Operators
There are several other operators we haven’t covered. Here are a
few compressed examples that demonstrate additional operators,
in combination with what we have seen already:

• ?srch: search nested data with custom expressions. E.g.
this will find all symbols in a lisp file and sort them as strings:
$ lqn -t "(?srch symbolp) (uniq _)

(sort _ #'string-lessp)" <file>

• ?txpr: search and replace nested data. The following will
alter the id of any JSON object with at least two items.
$ jqn '(?txpr (>= (size? (@ :items)) 2)

{_ (:id (str! "new-" _))})
' [file]

• ?fld: reduce with a function or expression. This expression
will parse and sum integers from the second column in a
csv file:
tqn '#((splt _ ",") (@ 1) int!?) [is?]

(?fld 0 +)' [file]

• ?rec: repeat an expression while the/an expression is T.
The following will iteratively add the next Fibonacci number
to the end of the incomingvector, until it reaches a number
larger than 50:
$ echo '#(1 1)' | lqn '

(?rec (<= (@ -1) 50)
(cat* _ (apply* + (tail _ 2))))'

LQN also has a number of other utilities fornumbers,vectors,
hash-tables, strings, symbols and lisp data. Such as: get-
ting ranges, indices or keys; concatenating, compacting and com-
bining; comparing; and checking and coercing types. The LQN
documentation covers this in more detail.

3 NOTES ON PERFORMANCE
The current implementation of LQN loads all the input into appro-
priate data structures before executing any of the transforms. This
simplifies the implementation, and makes it possible to do some
things that would otherwise be difficult or impossible. However, it

also has implications for performance; most notably it can increase
memory usage. A possible way alleviate this is to adapt the vari-
ous operators to support e.g. generators or streams in addition to
vectors and hash-tables.

Depending on the environment there might be a noticeable delay
when using LQN on the command-line, as SBCL first has to start and
load the LQN library, before it can load the input data and execute
the query. A possible way to reduced this delay considerably is to
create an SBCL image (sb-ext:save-lisp-and-die) where
LQN is already loaded. Then use the image to compile and execute
the query.

Additionally it is noticeably slower to process data from a pipe
on the command-line; compared to having LQN read the same data
from a file, or from *standard-input*. We have been unable
to find an explanation for this, but it is likely an issue in the current
implementation; as opposed to an issue with the overall approach.

4 CONCLUSION & FURTHERWORK
lqn is a young experiment. It has not been tested in many dif-
ferent circumstances, or for different tasks. For this reason it is
hard to know if the behaviour—such as defaults, and the order of
arguments—of the operators and utilities are convenient. Obviously
this will always depend on the use-case. But there is likely room
for improvement that will become more apparent with further use.

There is also a discussion to be had about the syntax of several of
the operators and modifiers. Particularly the selectors in section 2.8.
Maybe the overall syntax can be cleaner, or easier to read?

The language is still missing native utilities for data process-
ing. Such as calculating statistics (median, mean, variance), sorting,
and aggregations. And while there are some ways to interact with
other terminal commands, there is considerable room for improve-
ment. The same applies to interacting with files and the file system.
Both from the terminal and when using LQN as a library.

In a similar vein, it would be an interesting challenge to imple-
ment a more interactive command-line interface. Where the CLI
interaction and syntax is closer to the LQN language than e.g. bash.

Finally we would like to note that we have already found LQN
useful for performing code transformation in (CL) compilers for
other DSLs. We did not anticipate this from the beginning, but
it will probably shape the direction of further LQN development.
In particular it would be helpful to improve utilities and opera-
tors when it comes to processing CL data; in particular data that
represents source code. In all LQN is a useful little language, with
potential for expansion in several dimensions.

5 ACKNOWLEDGEMENTS
Thanks to Jack Rusher, Robert Smith and Rainer Joswig for an-
swering my questions; Zach Beane for making and maintaining
Quicklisp; and thanks to the larger Lisp community for all their
interesting work.

	Abstract
	1 Introduction
	2 Motivation, Design and Implementation
	2.1 Compiler
	2.2 Internal Data Representation
	2.3 CL Library
	2.4 Queries & the Get Operator
	2.5 Pipe, Map and Filter
	2.6 LQN on the Command-line
	2.7 Processing text
	2.8 Transforming with Selectors
	2.9 Other Operators

	3 Notes on Performance
	4 Conclusion & Further Work
	5 Acknowledgements

